Long-Term, Calibrated In Situ Observations are an Essential
Component of a Carbon Emission Monitoring System
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The NOAA Global Greenhouse Gas Reference Network (GGGRN):

Foundational Measurements of CO,and CH,

parts per million (ppm)
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Global, Multi-Decadal Observations of Atmospheric CO, and CH,
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® A solid foundation for atmospheric GHG measurements.
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In Situ Analyzers Provide Continuous Data

CO, (zmol mol™")
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Information about the
CO, diurnal cycle and
how it’s propagated
vertically

(CH4) Methane (nmol mol~1)
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Profile Data from Aircraft, Balloons and Tall Towers
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A Challenge for Detecting Changes in Fossil Fuel Emissions from Space:
the Signal of Interest is at the Surface
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Satellite sensors retrieve
total column CO.,.

Column average source/sink
signals are weak.

Biases/errors could be large
compared to key signals.

Fossil fuel emissions
dominate long-term CO,
growth, but variability is
dominated by the biosphere.
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Long-Term Atmospheric Observations Help us to Understand the

Earth’s Changing Energy Budget
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* Radiative Forcing = human impact on Earth’s energy budget

since pre-industrial times. Units are Watts/meter?.

www.esrl.noaa.gov/gmd/aggi, (fig: Bruhwiler et al., 2021)

Radiative Forcing calculated using
NOAA’s long-term global network
observations (GGGRN).

The CO, contribution is rapidly
increasing
(2x emission time ~ 30 yrs.!)

The GWP-100 of CH, is 28-36, but
there is less of it in the atmosphere.


http://www.esrl.noaa.gov/gmd/aggi

High Quality, Long-Term Data are Needed to Evaluate and

Improve Climate Models

Model Spread:

CO, — Climate sensitivity
differences including feedbacks
(clouds, carbon cycle)

CH, — Effects on other radiative
forcers (ozone, stratospheric
water vapor, aerosols).

Observed warming is driven by emissions from human activities, with
greenhouse gas warming partly masked by aerosol cooling

Observed warming Contributions to warming based on two complementary approaches
a) Observed warming b) Aggregated contributions to ¢) Contributions to 2010-2019
2010-2019 relative to 2010-2019 warming relative to warming relative to 1850-1900,
1850-1900 1850-1900, assessed from assessed from radiative
“C attribution studies py forcing studies
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We Should Not Ignore Terrestrial and Ocean Carbon Fluxes

Land and Oceans Take up ~ % of the
CO, emitted, the rest accumulates in
the atmosphere.

Will this continue?

If not, do we need to adjust our
emission mitigation strategies?

How can carbon dioxide removal and
other mitigation efforts succeed when
fundamental understanding of
“natural” carbon sinks is lacking?

CO,, flux (GtC yr')
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High Quality, Long-Term Measurements are Essent:al For Detectmg Carbon-
Climate Feedbacks o N 8 .

The amount of carbon in Arctic permafrost
Soils is ~4x what humans have already
emitted.

Arctic CH, emissions could double over this
century with accelerating increases next
century.

Amazon Rainforest Fire ( Reuters )

Will the Tropics take-up or emit more
carbon in the future?
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In Situ Observations are Complementary to Satellite Data
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Large differences between in situ
observations and satellite
retrievals in the Tropics where
we don’t have many in situ obs.
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These areas should be priorities
for in situ observations.
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Atmospheric Carbon Data Assimilation/ Flux Inversion:
NOAA’s CarbonTracker

Carbon Flux Models (inventories , wetland models)
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In Situ Surface
Network Data

Credit: NASA/Jenny Mottar and Abhishek Chatterjee

Carbon Analyses

Atmospheric Transport
Model+ DA/Inversion
Techniques (FV3
Development!)
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Federal Research Agencies Have a Lot of Infrastructure for
Understanding the Carbon Cycle |
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What Would Help: Increased International Coordination
Could we do this for CO, and CH ,?

What could we learn about the carbon
cycle if we could fly GHG analyzers on

commercial aircraft?
NOAA RESEARCH NEWS

0

measuring technology

What We have for Scientists with NOAA's Global Monitoring Laboratory will evaluate the optimal placement of
greenhouse-gas sampling inlets on a Boeing 737 flying testbed owned by Alaska Air during
Boeing's 2021 ecoDemonstrator technology development...

weather forecasting .




* Long-Term, high quality in situ datasets are essential for:

* Improving climate projections to support mitigation and adaptation efforts
* Fully exploiting data from satellite missions

* Greenhouse gas emissions are a global issue that requires international commitments
to long-term observations and infrastructure for timely data sharing.

e Establishing and maintaining monitoring sites in developing nations should be a
high priority.
* International sharing of data should be facilitated.

* US Federal agencies have developed many new capabilities that are still rapidly
evolving.

 We need a plan to transition to sustained operations and to develop next generation
data products and services to support mitigation and adaptation efforts.



