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ABSTRACT 

President Biden’s National Cybersecurity Strategy outlines two fundamental shifts: 

the need to both rebalance the responsibility to defend cyberspace and realign 

incentives to favor long-term cybersecurity investments. In this report, the case is 

made that the technical community is well-positioned to drive progress on both 

strategic goals. First, in order to reduce memory safety vulnerabilities at scale, 

creators of software and hardware can better secure the building blocks of 

cyberspace. This report focuses on the programming language as a primary building 

block, and explores hardware architecture and formal methods as complementary 

approaches to achieve similar outcomes. Second, in order to establish accurate 

cybersecurity quality metrics, advances can be made to address the hard and 

complex research problem of software measurability. This report explores how 

such metrics can shift market forces to improve cybersecurity quality across the 

ecosystem. 
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PART I: INTRODUCTION 

Users of software and hardware products are consistently placed in the untenable position of 

reacting to cyber emergencies. Responding on a crisis-by-crisis basis often leaves them on their 

heels, and those securing systems on the front lines should not be expected to bear the full weight 

of this burden. The intense reactive posture demanded by the current status quo reduces defenders’ 

ability to predict and prepare for the next wave of incoming attacks. 

This posture stems from the fact that mitigating known software vulnerabilities is a complex 

systems problem and the current ecosystem does not sufficiently incentivize the investments 

required to secure the foundations of cyberspace. Since 2021, the Biden-Harris Administration has 

taken major action, starting with Executive Order 14028 on Improving the Nation’s Cybersecurity, 

to drive the ecosystem to patch known classes of vulnerabilities through secure software 

development practices across the supply chain. Continuing to encourage both the government and 

the private sector to do this can have an outsized impact on improving the Nation’s cybersecurity. 

However, even if every known vulnerability were to be fixed, the prevalence of undiscovered 

vulnerabilities across the software ecosystem would still present additional risk. A proactive 

approach that focuses on eliminating entire classes of vulnerabilities reduces the potential attack 

surface and results in more reliable code, less downtime, and more predictable systems. Ultimately, 

this approach enables the United States to foster economic growth, accelerate technical innovation, 

and protect national security. Leaving these risks unmitigated comes with a costly price tag and 

may allow America’s adversaries to attempt to take advantage of the circumstances. 

To further address these dynamics, President Biden signed the National Cybersecurity Strategy 

(Strategy) in March 2023, setting forth an affirmative vision for cyberspace and imagining a new 

approach to solving these long-standing, difficult problems. The Strategy calls for two fundamental 

shifts in how the United States allocates roles, responsibilities, and resources. First, the Strategy 

calls for rebalancing the responsibility to defend cyberspace to those most capable and best 

positioned to reduce risks for all. Second, it notes the need to realign incentives to favor the long- 

term investments required to make cyberspace more resilient and defensible in the years to come. 

This Strategy recognizes a once-in-a-generation opportunity to make meaningful progress on these 

hard cyber problems in this decisive decade. 

Since its publication, the Biden-Harris Administration has taken concrete steps toward achieving 

these two fundamental shifts. The National Cybersecurity Strategy Implementation Plan (NCSIP) 

puts forth a roadmap of detailed initiatives for the United States Government to drive coordinated 

action.i The National Cyber Workforce and Education Strategy (NCWES), progeny of the Strategy, 

lays out a plan for employers to grow their cyber workforce and educators to expand access to 

cyber training.ii This report speaks directly to the technical community, including technology 

manufacturers and academic researchers, illustrating two ways their actions can make significant 

improvements to the Nation’s cybersecurity posture. 
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Programmers writing lines of code do not do so without consequence; the way they do their work 

is of critical importance to the national interest. This shift from reaction to strategic preparation 

highlights the enormous influence the technical community can have on the security of a shared 

digital ecosystem. This report articulates a dual approach: first, in order to reduce memory safety 

vulnerabilities at scale, creators of software and hardware can secure building blocks of 

cyberspace. This report focuses on the programming language as a primary building block, and 

explores hardware architecture and formal methods as complementary approaches to achieve 

similar outcomes. Second, in order to establish better cybersecurity quality metrics, the research 

community can address the hard and complex research problem of software measurability. This 

report explores how such metrics can shift market forces to improve cybersecurity quality across 

the ecosystem. 

This work cannot be accomplished by government action alone. These approaches will be 

ambitious undertakings that will require persistent, multi-sector focus for the years to come. As 

these crucial efforts move forward, there are grounds for optimism in the ability to overcome the 

challenges that lie ahead. There are no “silver bullets” in cybersecurity, but power comes through 

the alignment of today’s resources with tomorrow’s aspirations. The future prosperity and security 

of the digital ecosystem requires determined cooperation with the technical community. 
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PART II: SECURING THE BUILDING 

BLOCKS OF CYBERSPACE 

To reduce the burden currently placed on end users to protect themselves from cybersecurity 

threats, efforts must be made to proactively eliminate entire categories of software vulnerabilities. 

To better understand the prevalence of these categories, software manufactures should consider 

publishing timely, complete, and consistent Common Vulnerability and Exposures (CVEs) data, 

including the Common Weakness Enumeration (CWE). Past analysis of CVE data identified 

memory safety bugs as one of the most pervasive classes of vulnerabilities that has plagued cyber 

defenders for decades. 

Memory safety vulnerabilities are a class of vulnerability affecting how memory can be accessed, 

written, allocated, or deallocated in unintended ways.iii Experts have identified a few programming 

languages that both lack traits associated with memory safety and also have high proliferation 

across critical systems, such as C and C++.iv Choosing to use memory safe programming languages 

at the outset, as recommended by the Cybersecurity and Infrastructure Security Agency’s (CISA) 

Open-Source Software Security Roadmap is one example of developing software in a secure-by- 

design manner.v 

There are two broad categories of memory safety vulnerabilities: spatial and temporal. Spatial 

memory safety issues result from memory accesses performed outside of the “correct” bounds 

established for variables and objects in memory. Temporal memory safety issues arise when 

memory is accessed outside of time or state, such as accessing object data after the object is freed 

or when memory accesses are unexpectedly interleaved.vi Many of the major cybersecurity 

vulnerabilities over the past several decades were facilitated by memory safety vulnerabilities, 

including the Morris Worm of 1988, the Slammer Worm denial-of-service attack in 2003, the 

Heartbleed vulnerability in 2014, and the BLASTPASS exploit chain of 2023.vii For over 35 years, 

this same class of vulnerability has vexed the digital ecosystem. 

The highest leverage method to reduce memory safety vulnerabilities is to secure one of the 

building blocks of cyberspace: the programming language. Using memory safe programming 

languages can eliminate most memory safety errors. While in some distinct situations, using a 

memory safe language may not be feasible – this report examines space systems as a unique edge 

case and identifies memory safe hardware and formal methods as complementary ways to achieve 

a similar outcome – in most cases, using a memory safe programming language is the most efficient 

way to substantially improve software security. 
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Memory Safe Programming Languages 

Since many cybersecurity issues start with a line of code, one of the most effective ways to address 

those issues is by examining the programming language itself. Ensuring that a programming 

language includes certain properties, such as memory or type safety, means software built upon 

that foundation automatically inherits the security those features provide. 

Cybersecurity solutions should be informed by engineering best practices, and technology 

manufacturers building software can tackle this issue by consistently using secure building blocks; 

specifically, adopting memory safe programming languages. There is strong evidence that now is 

the time to make these changes. First, technical solutions already exist; there are dozens of memory 

safe programming languages that can – and should – be used. Technology manufacturers are 

already able to design and build new products in memory safe programming languages from day 

one. Second, the transition to memory safe programming languages has a demonstrably positive 

effect on cybersecurity. Industry analysis has shown in some cases, that despite rigorous code 

reviews as well as other preventive and detective controls, up to 70 percent of security 

vulnerabilities in memory unsafe languages patched and assigned a CVE designation are due to 

memory safety issues.viii When large code bases are migrated to a memory safe language, evidence 

shows that memory safety vulnerabilities are nearly eliminated.ix 

For new products, choosing to build in a memory safe programming language is an early 

architecture decision that can deliver significant security benefits. Even for existing codebases, 

where a complete rewrite of code is more challenging, there are still paths toward adopting memory 

safe programming languages by taking a hybrid approach. For example, software developers can 

identify the critical functions or libraries based on risk criteria and prioritize efforts to rewrite those 

first.x 

Building new products and migrating high-impact legacy code to memory safe programming 

languages can significantly reduce the prevalence of memory safety vulnerabilities throughout the 

digital ecosystem.xi To be sure, there are no one-size-fits-all solutions in cybersecurity, and using 

a memory safe programming language cannot eliminate every cybersecurity risk. However, it is a 

substantial, additional step technology manufacturers can take toward the elimination of broad 

categories of software vulnerabilities. A recent report authored by CISA, the NSA, the FBI, and 

international cybersecurity agencies entitled The Case for Memory Safe Roadmaps, provides 

guidance for manufacturers with steps to implement changes to eliminate memory safety 

vulnerabilities from their products.xii 

Memory Safe Hardware 

In April of 1970, an on-board explosion derailed Apollo 13’s mission to the Moon. Two days into 

the astronauts’ voyage, an exposed wire ignited a fire and caused one of the ship’s two oxygen 

tanks to burst.xiii The astronauts’ only hope for survival was for the rocket scientists to react 

ingeniously – and fast. Employing the laws of physics and the rules of mathematics, the aerospace 
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engineers worked quickly and calculated an engine burn by the lunar module to successfully get 

Apollo 13 on a trajectory back to Earth.xiv 

Over fifty years later, aerospace engineers and policymakers alike have not left the future of space 

safety to fate. Thanks in large part to technological advancements in modern computing and 

software engineering, digital automation has minimized the risk of human error, shifting the burden 

away from the astronauts in orbit – and the rocket scientists in the command center – and ensuring 

the spacecraft is safer by design, and in-turn, safer for its crew. In the case of Apollo 13 the near 

disaster was inadvertently caused by the laws of physics, but today there are adversaries actively 

trying to sabotage space systems.xv Now, as cyberspace continues to be introduced to outer space, 

the spacecraft must also be secure by design. A catastrophe should not be the catalyst for action. 

The space ecosystem is not immune to memory safety vulnerabilities, however there are several 

constraints in space systems with regards to language use. First, the language must allow the code 

to be close to the kernel so that it can tightly interact with both software and hardware; second, the 

language must support determinism so the timing of the outputs are consistent; and third, the 

language must not have – or be able to override – the “garbage collector,” a function that 

automatically reclaims memory allocated by the computer program that is no longer in use.xvi 

These requirements help ensure the reliable and predictable outcomes necessary for space systems. 

According to experts, both memory safe and memory unsafe programming languages meet these 

requirements. At this time, the most widely used languages that meet all three properties are C and 

C++, which are not memory safe programming languages. Rust, one example of a memory safe 

programming language, has the three requisite properties above, but has not yet been proven in 

space systems. Further progress on development toolchains, workforce education, and fielded case 

studies are needed to demonstrate the viability of memory safe languages in these use cases. In the 

interim, there are other ways to achieve memory safe outcomes at scale by using secure building 

blocks. Therefore, to reduce memory safety vulnerabilities in space or other embedded systems 

that face similar constraints, a complementary approach to implement memory safety through 

hardware can be explored. 

The chip, in particular, is an important hardware building block to consider. There are several 

promising efforts currently underway to support memory protections through hardware. For 

example, a group of manufacturers have developed a new memory-tagging extension (MTE) to 

cross-check the validity of pointers to memory locations before using them. If they are invalid, the 

CPU produces an error.xvii This technique is an effective method to detect memory safety bugs, but 

this approach should not be considered a comprehensive solution to prevent all memory safety 

exploits.xviii Another example of a hardware method is the Capability Hardware Enhanced RISC 

Instructions (CHERI).xix This architecture changes how software accesses memory, with the aim 

of removing vulnerabilities present in historically memory unsafe languages.xx 
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Formal Methods 

Even if engineers build with memory safe programming languages and memory safe chips, one 

must think about the vulnerabilities that will persist even after technology manufacturers take steps 

to eliminate the most prevalent classes. Given the complexities of code, testing is a necessary but 

insufficient step in the development process to fully reduce vulnerabilities at scale. If correctness 

is defined as the ability of a piece of software to meet a specific security requirement, then it is 

possible to demonstrate correctness using mathematical techniques called formal methods. These 

techniques, often used to prove a range of software outcomes, can also be used in a cybersecurity 

context and are viable even in complex environments like space. While formal methods have been 

studied for decades, their deployment remains limited; further innovation in approaches to make 

formal methods widely accessible is vital to accelerate broad adoption. Doing so enables formal 

methods to serve as another powerful tool to give software developers greater assurance that entire 

classes of vulnerabilities, even beyond memory safety bugs, are absent. 

While there are several types of formal methods that span a range of techniques and stages in the 

software development process, this report highlights a few specific examples. Sound static analysis 

examines the software for specific properties without executing the code.xxi This method is 

effective because it can be used across many representations of software, including the source code, 

architecture, requirements, and executables. Model checkers can answer questions about a number 

of higher-level properties.xxii These algorithms can be used during production; however, they are 

limited in their scaled use due to their computational complexity. Assertion-based testing is a 

formal statement of properties carried in the code that may be used to cross-check the code during 

testing or production.xxiii These generated proofs allow for faults to be detected much earlier and 

closer to the erroneous code, rather than tracing back from externally visible systems failures. 

There are two ways software engineers can use these techniques across software and hardware. 

First, formal methods can be incorporated directly into the developer toolchain. As the programmer 

builds, tests, and deploys software, the compiler can automate these mathematical proofs and verify 

that a security condition is met.xxiv Additionally, the developer can use formally verified core 

components in their software supply chain.xxv By choosing provably secure software libraries, 

developers can ensure the components they are using are less likely to contain vulnerabilities. 

Formal methods can be incorporated throughout the development process to reduce the prevalence 

of multiple categories of vulnerabilities. Some emerging technologies are also well-suited to this 

technique.xxvi As questions arise about the safety or trustworthiness of a new software product, 

formal methods can accelerate market adoption in ways that traditional software testing methods 

cannot. They allow for proving the presence of an affirmative requirement, rather than testing for 

the absence of a negative condition.xxvii 

While memory safe hardware and formal methods can be excellent complementary approaches to 

mitigating undiscovered vulnerabilities, one of the most impactful actions software and hardware 

manufacturers can take is adopting memory safe programming languages. They offer a way to 

eliminate, not just mitigate, entire bug classes. This is a remarkable opportunity for the technical 

community to improve the cybersecurity of the entire digital ecosystem. 
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PART III: ADDRESSING THE SOFTWARE 

MEASURABILITY PROBLEM 

To make progress toward securing the digital ecosystem, it is necessary to realign incentives to 

favor long-term investments. For this realignment to generate ecosystem-wide behavior change, it 

is critical to develop empirical metrics that measure the cybersecurity quality of software. This will 

help inform both producer and consumer decision-making, as well as public policymaking efforts. 

Ongoing work to improve how software quality and security are understood, including coordinated 

vulnerability disclosure, response programs, and timely CVE records, informs essential decision 

making throughout the ecosystem. Nevertheless, more progress is required to develop empirical 

metrics to effectively measure code. 

Software measurability is one of the hardest open research problems to address; in fact, 

cybersecurity experts have grappled with this problem for decades. The problem requires not only 

refining existing metrics or tools, but also the pioneering of a new frontier in software engineering 

and cybersecurity research. By advancing capabilities to measure and evaluate software security, 

more vulnerabilities can be anticipated and mitigated before software is released. The metrics 

developed from these measurements will also inform the decision-making of a broad range of 

stakeholders, further improving the security of the digital ecosystem and incentivizing long-term 

investments in secure software development. 

Challenges with Software Measurability 

In 2016, the software quality group at the United States National Institute of Standards and 

Technology (NIST) convened a workshop to explore enhancements in software measures and 

metrics, aiming to dramatically reduce software vulnerabilities.xxviii The conclusions from this 

workshop underscored the multifaceted nature of the software measurability problem and 

identified three core challenges: software metrology, software behavior, and software analysis. 

First, the inherent challenge of software metrology – the science of software measurement – stems 

from the fact that software is not just a technical construct, but also a form of human expression. 

Unlike physical engineering products, most software lacks a uniform structure or composition. 

This heterogeneity in design and architecture renders the definition of cybersecurity quality highly 

subjective and context-dependent, complicating the establishment of universal metrics.xxix 

Second, the behavior of software under various conditions may not be entirely deterministic.xxx 

While certain inputs and processes might predictably lead to specific outputs, the overall behavior 

of complex software systems often eludes such predictability. Moreover, software does not 

necessarily conform neatly to probabilistic distributions, making it difficult to apply statistical 
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models or predictions commonly used in other scientific disciplines. This unpredictability hinders 

the capacity to reliably and consistently measure software performance and security. 

Third, the difficulty of analyzing software compounds the problem.xxxi Analyzing software to 

evaluate its cybersecurity quality is limited by what can be quantified. Traditional methods, like 

counting known vulnerabilities, are insufficient and do not necessarily provide insight into future 

threats or attack vectors.xxxii The dynamic and evolving nature of both software development and 

cyber threats means that what is measured today may not be relevant tomorrow, making the 

development of forward-looking, predictive measures an arduous task. 

These challenges are substantial, but the research community should revisit this hard problem. The 

recently published Federal Cybersecurity Research and Development Strategic Plan also highlights 

software measurability as a research priority for the Biden-Harris Administration.xxxiii Increasing 

the research community’s attention on this endeavor will lay the groundwork for the identification 

and development of measures of software cybersecurity quality. This could enable the creation of 

valuable metrics that close a significant information gap. While these metrics would be useful for 

the software developer looking to secure their code, they also have far-reaching implications for 

the entire cybersecurity ecosystem. 

Applications of Cybersecurity Quality Metrics 

In December 2021, the discovery of a vulnerability within Log4j, a ubiquitous open-source Java 

logging library, highlighted a critical weakness through which malicious actors could compromise 

computer systems across the world.xxxiv Governments, multinational corporations, and critical 

infrastructure operators scrambled to assess the extent of their exposure. This vulnerability 

highlighted the critical need to help ensure the security of the open-source ecosystem, which fosters 

tremendous innovation worldwide. Known as “Log4Shell,” it illuminated an unfortunate truth in 

cybersecurity: preemptively measuring the cybersecurity quality of software remains a Herculean 

task. 

The open-source software ecosystem provides a unique backdrop for the examination of software 

measurement. Open-source software is ubiquitous in hardware and software across nearly every 

economic sector, which presents a variety of security challenges. The accessible and transparent 

nature of open-source software also makes it an excellent environment for the application of 

software measurement and the resulting development of cybersecurity quality metrics. 

If developed, robust software measurements could improve one’s ability to evaluate cybersecurity 

quality. By quantifying what was once qualitative, the precision and objectivity of software 

assessment is improved. This allows for a more nuanced understanding of where and how 

cybersecurity can be enhanced. 

With an effective measurement of quality, the next advancement lies in the continuous monitoring 

of this metric. Instead of one-time cybersecurity assessments, software can be dynamically 

evaluated. This advancement would help keep pace with an environment where threats constantly 

emerge and evolve, and software itself is in a state of perpetual development and refinement. 
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metrics into a visual narrative of software security. The power of visualization in conveying 

complex data is well-established, and in the context of cybersecurity, proves invaluable. With a 

quality graph, trends and patterns that might have remained obscured in tables of data would 

become more comprehensible. 

Finally, with the visualization of quality trends and with an appropriate mathematical function to 

fit the data, additional metrics can be derived. One potential derivative – response rate – shows the 

rate of change of the cybersecurity quality metric. This type of derived metric would offer deeper 

insights into the software’s security profile. For instance, a rapid response rate to emerging 

vulnerabilities would indicate a proactive and trustworthy software vendor. 

The application of cybersecurity quality metrics marks a shift in how software security is 

approached and understood. It is a journey from subjective assessment to objective precision, static 

snapshots to dynamic trends, and diffuse data to actionable insights. When applied to the 

opensource software ecosystem it is easy to imagine the resulting impact; like using these metrics 

to identify an open-source library with poor cybersecurity quality and deciding to use a more secure 

component instead. 

Shifting Market Forces to Improve Cybersecurity Quality 

Reframing the discussion on cybersecurity from a reactive to a proactive approach enables a shift 

in focus from the front-line defenders to the wide range of individuals that have an important part 

to play in securing the digital ecosystem. For far too long, primary responsibility for the 

cybersecurity of an organization has rested with the Chief Information Security Officer (CISO) of 

the company using software. They cannot be the only stakeholder accountable for cybersecurity 

outcomes; it is also critical, for example, that the Chief Information Officer (CIO) who is buying 

software, and the Chief Technology Officer (CTO) of manufacturers building software share this 

responsibility. A cybersecurity quality metric could improve collaborative decision-making across 

all parties. 

In navigating the complex research landscape of software measurability, there are three 

fundamental dimensions to the risk software poses to the cybersecurity of an organization: the 

developer process, the software analysis and testing, and the execution environment.xxxv When 

looking at the development of a quality metric, the first two dimensions are fundamentally 

reflective of the software itself and are where architectural and design choices play the most 

significant role in improving security. They are also the dimensions that will remain static across 

all deployments of a version of software. Understanding these three dimensions can inform how 

cybersecurity quality metrics can be used across the ecosystem. 

The CTOs of software manufacturers and the CIOs of software users are best leveraged to make 

decisions about the intrinsic quality of the software, and are therefore likely most interested in the 

first two dimensions of cybersecurity risk. In the first dimension, the software development 

process, the caliber of the development team plays a crucial role. Teams that are well-trained and 

experienced, armed with clear requirements and a history of creating robust software with minimal 
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vulnerabilities, foster a higher level of confidence in the software they produce.xxxvi The 

competence and track record of the development team serve as hallmarks of reliability, suggesting 

that software crafted under their expertise is more likely to be secure and less prone to 

vulnerabilities. A CTO might make decisions about how to hire for or structure internal 

development teams to improve the cybersecurity quality metrics associated with products 

developed by the organization, and a CIO may make procurement decisions based on their trust in 

a vendor’s development practices. 

The second dimension that both CTOs and CIOs could consider is the analysis of the software 

product. With better metrics, CTOs could use a range of rigorous analysis methods – such as code 

reviews, acceptance tests, and formal methods – to assure that vulnerabilities in a piece of software 

will be rare. A CIO might base a purchasing decision in large part on how well a software product 

scores on quality metrics, confident that its adoption would pose less risk to the organization. 

The CISO of an organization is primarily focused on the security of an organization’s information 

and technology systems. While this individual would be interested in all three dimensions of 

software cybersecurity risk, they have less direct control over the software being used in their 

environments. As such, CISOs would likely be most interested in the third dimension: a resilient 

execution environment. By running the software in a controlled, restricted environment such as a 

container with limited system privileges, or using control flow integrity to monitor a program at 

runtime to catch deviations from normal behavior, the potential damage from exploited 

vulnerabilities can be substantially contained.xxxvii This method does not eliminate vulnerabilities 

but rather mitigates their impact, serving as a potential safety net in case of exploitation.xxxviii Since 

the CISO does not always get to decide what technology and security capabilities they work with, 

this dimension could influence a CISO’s prioritization of risk mitigation actions for a piece of 

software with problematic cybersecurity quality. 

While the Biden-Harris Administration has taken significant steps to motivate the market to patch 

known vulnerabilities, including Executive Order 14028, users still face cybersecurity risk from 

their software due to a lack of information that can help reduce future vulnerabilities – by stopping 

them before they occur, by finding them before they are exploited, or by reducing their impact.xxxix 

Software manufacturers are not sufficiently incentivized to devote appropriate resources to secure 

development practices, and their customers do not demand higher quality software because they 

do not know how to measure it. Operationally, organizations do not take sufficient steps to mitigate 

the risk of low-quality software because they are not aware they are carrying that risk at all and 

often cannot afford the mitigations even if they are aware. 

Better cybersecurity quality metrics change the equation because they will enable data-informed 

decision-making across the supply chain. While the technical executives, like the CTO, CIO, and 

CISO, play a defining role in executing this vision, cybersecurity quality must also be seen as a 

business imperative for which the CEO and the board of directors are ultimately accountable. 

Addressing the software measurability problem would fully realize this metric’s utility, closing a 

vital information gap and incentivizing long-term investments in software security. This would 

allow all ecosystem stakeholders to see their return on investment or clearly understand the risk of 

a lower quality product. 
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PART IV: CONCLUSION 

The challenge of eliminating entire classes of software vulnerabilities is an urgent and complex 

problem. Looking forward, new approaches must be taken to mitigate this risk. Doing so will allow 

the United States to continue its progress toward President Biden’s affirmative vision for a secure 

and resilient cyberspace. 

The technical community is critical to this progress. Through the adoption of memory safe 

programming languages, creators of software and hardware can better secure the building blocks 

of cyberspace and proactively eliminate entire classes of bugs. By rallying around the hard and 

complex problem of software measurability, the research community can develop better 

cybersecurity quality metrics to incentivize better decision-making by consumers, manufacturers, 

and policymakers across the ecosystem. These efforts will be bold, long-term endeavors that 

require sustained focus and prioritization. Now is the time to begin this work. 

The road toward this vision requires a recognition that the Nation is at its best when Americans 

work together. It is a path that requires the convergence of government initiative, private sector 

innovation, and groundbreaking academic research. Working together to proactively eliminate 

software vulnerabilities alleviates the burden from those least equipped to bear it, and empowers 

front-line cyber defenders to look forward. Defining high-quality cybersecurity realigns incentives 

and provides confidence in what cyberspace can be. Together, these collaborative forces will 

continue to propel us toward a future where cyberspace is secure, resilient, and trustworthy, 

embodying fundamental American values and remaining unbent to the animosity of our 

adversaries. As President Biden frequently remarks, “We are the United States of America and 

there is nothing, nothing beyond our capacity if we do it together.” 
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