Unraveling the risks to forests under climate change

William Anderegg
School of Biological Sciences
Wilkes Center for Climate Science and Policy
University of Utah

Photo: Anderegg Lab
What we do:

Ecophysiology of plant climate responses

Scaling plant responses from tissues to ecosystems

Global ecology for nature-based climate solutions
What are Nature-based Climate Solutions for forests?

• A broad set of strategies
 • Avoided forest conversion
 • Reforestation/afforestation
 • Improved forest management
 • Improved plantations
 • Agroforestry

• Often substantial co-benefits
 • Biodiversity & habitat
 • Ecosystem services (e.g. water quality, pollination, tourism)

• Enormous current interest from companies and governments
Generally, forest climate solutions projects must:
1. Cool the climate on net
2. Lead to ‘additional’ carbon storage
3. Account for shifting activities
4. Address risks to durability

There are currently enormous problems in existing carbon offset protocols in each of these four areas – an important science and policy issue
Future projected climate risks

Anderegg, Chegwidden et al., 2022, *Ecology Letters*
Large differences across current methods.
Current forest offset projects are at **substantial risk of C losses** even in SSP245.
Next step: We have leveraged satellite, ground plot, and ML methods to develop US and global reversal risk and buffer pool sizes needed for forest climate protocols/policies

Anderegg et al., 2022, *Science*
Concluding thoughts

1. Interdisciplinary funding from government agencies (e.g. NSF) and foundations has been instrumental to this work.
2. Critical role of ‘blue sky thinking’ funding for taking risks.
3. Carving out the time for deep thinking and creativity is a challenge but crucial.
4. Increasing compliance time and costs of research are key challenges.
5. Open science is absolutely critical – large risk in climate/carbon space of much of models and data being developed in the private sector, limiting confidence, transparency, and accountability.
Thank you!

Collaborators: Jordi Martinez-Vilalta, Maurizio Mencuccini, Rafael Poyatos, Shane Coffield, Anna Trugman, Grayson Badgley, Oriana Chegwidden, Jeremy Freeman, Danny Cullenward, Joseph Hamman, Scott Goetz, Jeffrey Hicke, Deborah Huntzinger, Robert Jackson, John Nickerson, Stephen Pacala, James Randerson, Mike Goulden, Tom Pugh, Rupert Seidl, Nuno Carvalhais

Grants: 1802880, 2003017, CAREER 2044937, Alan T. Waterman Award

Grants: 67012-28020 67019-27850 11046000-617

Packard Foundation Fellowship for Science & Engineering
An enormous thanks to: